687 research outputs found

    The intrinsic value of HFO features as a biomarker of epileptic activity

    Full text link
    High frequency oscillations (HFOs) are a promising biomarker of epileptic brain tissue and activity. HFOs additionally serve as a prototypical example of challenges in the analysis of discrete events in high-temporal resolution, intracranial EEG data. Two primary challenges are 1) dimensionality reduction, and 2) assessing feasibility of classification. Dimensionality reduction assumes that the data lie on a manifold with dimension less than that of the feature space. However, previous HFO analyses have assumed a linear manifold, global across time, space (i.e. recording electrode/channel), and individual patients. Instead, we assess both a) whether linear methods are appropriate and b) the consistency of the manifold across time, space, and patients. We also estimate bounds on the Bayes classification error to quantify the distinction between two classes of HFOs (those occurring during seizures and those occurring due to other processes). This analysis provides the foundation for future clinical use of HFO features and buides the analysis for other discrete events, such as individual action potentials or multi-unit activity.Comment: 5 pages, 5 figure

    Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels

    Get PDF
    BACKGROUND: The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. RESULTS: We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of β-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. CONCLUSION: Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth

    Preictal variability of high‐frequency oscillation rates in refractory epilepsy

    Full text link
    ObjectiveHigh‐frequency oscillations (HFOs) have shown promising utility in the spatial localization of the seizure onset zone for patients with focal refractory epilepsy. Comparatively few studies have addressed potential temporal variations in HFOs, or their role in the preictal period. Here, we introduce a novel evaluation of the instantaneous HFO rate through interictal and peri‐ictal epochs to assess their usefulness in identifying imminent seizure onset.MethodsUtilizing an automated HFO detector, we analyzed intracranial electroencephalographic data from 30 patients with refractory epilepsy undergoing long‐term presurgical evaluation. We evaluated HFO rates both as a 30‐minute average and as a continuous function of time and used nonparametric statistical methods to compare individual and population‐level differences in rate during peri‐ictal and interictal periods.ResultsMean HFO rate was significantly higher for all epochs in seizure onset zone channels versus other channels. Across the 30 patients of our cohort, we found no statistically significant differences in mean HFO rate during preictal and interictal epochs. For continuous HFO rates in seizure onset zone channels, however, we found significant population‐wide increases in preictal trends relative to interictal periods. Using a data‐driven analysis, we identified a subset of 11 patients in whom either preictal HFO rates or their continuous trends were significantly increased relative to those of interictal baseline and the rest of the population.SignificanceThese results corroborate existing findings that HFO rates within epileptic tissue are higher during interictal periods. We show this finding is also present in preictal, ictal, and postictal data, and identify a novel biomarker of preictal state: an upward trend in HFO rate leading into seizures in some patients. Overall, our findings provide preliminary evidence that HFOs can function as a temporal biomarker of seizure onset.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163961/1/epi16680.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163961/2/epi16680_am.pd

    Signal distortion from microelectrodes in clinical EEG acquisition systems

    Get PDF
    Many centers are now using high-density microelectrodes during traditional intracranial electroencephalography (iEEG) both for research and clinical purposes. These microelectrodes are FDA-approved and integrate into clinical EEG acquisition systems. However, the electrical characteristics of these electrodes are poorly described and clinical systems were not designed to use them; thus, it is possible that this shift into clinical practice could have unintended consequences. In this study, we characterized the impedance of over 100 commercial macro- and microelectrodes using electrochemical impedance spectroscopy (EIS) to determine how electrode properties could affect signal acquisition and interpretation. The EIS data were combined with the published specifications of several commercial EEG systems to design digital filters that mimic the behavior of the electrodes and amplifiers. These filters were used to analyze simulated brain signals that contain a mixture of characteristic features commonly observed in iEEG. Each output was then processed with several common quantitative EEG measurements. Our results show that traditional macroelectrodes had low impedances and produced negligible distortion of the original signal. Brain tissue and electrical wiring also had negligible filtering effects. However, microelectrode impedances were much higher and more variable than the macroelectrodes. When connected to clinical amplifiers, higher impedance electrodes produced considerable distortion of the signal at low frequencies (<60 Hz), which caused significant changes in amplitude, phase, variance and spectral band power. In contrast, there were only minimal changes to the signal content for frequencies above 100 Hz. In order to minimize distortion with microelectrodes, we determined that an acquisition system should have an input impedance of at least 1 GΩ, which is much higher than most clinical systems. These results show that it is critical to account for variations in impedance when analyzing EEG from different-sized electrodes. Data from microelectrodes may yield misleading results unless recorded with high-impedance amplifiers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98632/1/1741-2552_9_5_056007.pd

    Temporal Changes of Neocortical High-Frequency Oscillations in Epilepsy

    Get PDF
    High-frequency (100–500 Hz) oscillations (HFOs) recorded from intracranial electrodes are a potential biomarker for epileptogenic brain. HFOs are commonly categorized as ripples (100–250 Hz) or fast ripples (250–500 Hz), and a third class of mixed frequency events has also been identified. We hypothesize that temporal changes in HFOs may identify periods of increased the likelihood of seizure onset. HFOs (86,151) from five patients with neocortical epilepsy implanted with hybrid (micro + macro) intracranial electrodes were detected using a previously validated automated algorithm run over all channels of each patient\u27s entire recording. HFOs were characterized by extracting quantitative morphologic features and divided into four time epochs (interictal, preictal, ictal, and postictal) and three HFO clusters (ripples, fast ripples, and mixed events). We used supervised classification and nonparametric statistical tests to explore quantitative changes in HFO features before, during, and after seizures. We also analyzed temporal changes in the rates and proportions of events from each HFO cluster during these periods. We observed patient-specific changes in HFO morphology linked to fluctuation in the relative rates of ripples, fast ripples, and mixed frequency events. These changes in relative rate occurred in pre- and postictal periods up to thirty min before and after seizures. We also found evidence that the distribution of HFOs during these different time periods varied greatly between individual patients. These results suggest that temporal analysis of HFO features has potential for designing custom seizure prediction algorithms and for exploring the relationship between HFOs and seizure generation

    Beef production from feedstuffs conserved using new technologies to reduce negative environmental impacts

    Get PDF
    End of project reportMost (ca. 86%) Irish farms make some silage. Besides directly providing feed for livestock, the provision of grass silage within integrated grassland systems makes an important positive contribution to effective grazing management and improved forage utilisation by grazing animals, and to effective feed budgeting by farmers. It can also contribute to maintaining the content of desirable species in pastures, and to livestock not succumbing to parasites at sensitive times of the year. Furthermore, the optimal recycling of nutrients collected from housed livestock can often be best achieved by spreading the manures on the land used for producing the conserved feed. On most Irish farms, grass silage will remain the main conserved forage for feeding to livestock during winter for the foreseeable future. However, on some farms high yields of whole-crop (i.e. grain + straw) cereals such as wheat, barley and triticale, and of forage maize, will be an alternative option provided that losses during harvesting, storage and feedout are minimised and that input costs are restrained. These alternative forages have the potential to reliably support high levels of animal performance while avoiding the production of effluent. Their production and use however will need to advantageously integrate into ruminant production systems. A range of technologies can be employed for crop production and conservation, and for beef production, and the optimal options need to be identified. Beef cattle being finished indoors are offered concentrate feedstuffs at rates that range from modest inputs through to ad libitum access. Such concentrates frequently contain high levels of cereals such as barley or wheat. These cereals are generally between 14% to 18% moisture content and tend to be rolled shortly before being included in coarse rations or are more finely processed prior to pelleting. Farmers thinking of using ‘high-moisture grain’ techniques for preserving and processing cereal grains destined for feeding to beef cattle need to know how the yield, conservation efficiency and feeding value of such grains compares with grains conserved using more conventional techniques. European Union policy strongly encourages a sustainable and multifunctional agriculture. Therefore, in addition to providing European consumers with quality food produced within approved systems, agriculture must also contribute positively to the conservation of natural resources and the upkeep of the rural landscape. Plastics are widely used in agriculture and their post-use fate on farms must not harm the environment - they must be managed to support the enduring sustainability of farming systems. There is an absence of information on the efficacy of some new options for covering and sealing silage with plastic sheeting and tyres, and an absence of an inventory of the use, re-use and post-use fate of plastic film on farms. Irish cattle farmers operate a large number of beef production systems, half of which use dairy bred calves. In the current, continuously changing production and market conditions, new beef systems must be considered. A computer package is required that will allow the rapid, repeatable simulation and assessment of alternate beef production systems using appropriate, standardised procedures. There is thus a need to construct, evaluate and utilise computer models of components of beef production systems and to develop mathematical relationships to link system components into a network that would support their integration into an optimal system model. This will provide a framework to integrate physical and financial on-farm conditions with models for estimating feed supply and animal growth patterns. Cash flow and profit/loss results will be developed. This will help identify optimal systems, indicate the cause of failure of imperfect systems and identify areas where applied research data are currently lacking, or more basic research is required

    Passive and active markers of cortical excitability in epilepsy

    Full text link
    Electroencephalography (EEG) has been the primary diagnostic tool in clinical epilepsy for nearly a century. Its review is performed using qualitative clinical methods that have changed little over time. However, the intersection of higher resolution digital EEG and analytical tools developed in the past decade invites a re-exploration of relevant methodology. In addition to the established spatial and temporal markers of spikes and high-frequency oscillations, novel markers involving advanced postprocessing and active probing of the interictal EEG are gaining ground. This review provides an overview of the EEG-based passive and active markers of cortical excitability in epilepsy and of the techniques developed to facilitate their identification. Several different emerging tools are discussed in the context of specific EEG applications and the barriers we must overcome to translate these tools into clinical practice

    New records of biting midges of the genus \u3ci\u3eCulicoides\u3c/i\u3e Latreille from the southeastern United States (Diptera: Ceratopogonidae)

    Get PDF
    We provide new state and county records of biting midges in the genus Culicoides Latreille (Diptera: Ceratopogonidae) from the southeastern United States collected with CDC miniature light traps during 2007–2012 in Florida, Georgia, Alabama, Mississippi, Louisiana, Arkansas, and Texas. The primary goals of the surveys were to identify the presence of exotic Culicoides, and determine the ranges of known and possible vectors of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). Included are the first records of: Culicoides (Amossovia) beckae Wirth and Blanton from Louisiana and Mississippi, C. (A.) oklahomensis Khalaf from Alabama and Arkansas, C. (Avaritia) alachua Jamnback and Wirth from Alabama, C. (Culicoides) neopulicaris Wirth from Alabama, C. (Drymodesmyia) butleri Wirth and Hubert from Texas, C. (Hoffmania) insignis Lutz from Mississippi, C. (Oecacta) barbosai Wirth and Blanton from Georgia, C. (Silvaticulicoides) loisae Jamnback from Alabama, and C. kirbyi Glick and Mullen from Mississippi. We also provide new Florida county records for C. alachua, C. barbosai, C. (Beltranmyia) hollensis (Melander and Brues), C. insignis, and C. (Monoculicoides) sonorensis Wirth and Jones; a new Georgia county record for C. alachua; and new Alabama county records for C. insignis, and C. sonorensis

    Control of Vancomycin-Resistant Enterococcus in Health Care Facilities in a Region

    Get PDF
    Background In late 1996, vancomycin-resistant enterococci were first detected in the Siouxland region of Iowa, Nebraska, and South Dakota. A task force was created, and in 1997 the assistance of the Centers for Disease Control and Prevention was sought in assessing the prevalence of vancomycin-resistant enterococci in the region’s facilities and implementing recommendations for screening, infection control, and education at all 32 health care facilities in the region. Methods The infection-control intervention was evaluated in October 1998 and October 1999. We performed point-prevalence surveys, conducted a case– control study of gastrointestinal colonization with vancomycin-resistant enterococci, and compared infection-control practices and screening policies for vancomycin-resistant enterococci at the acute care and long-term care facilities in the Siouxland region. Results Perianal-swab samples were obtained from 1954 of 2196 eligible patients (89 percent) in 1998 and 1820 of 2049 eligible patients (89 percent) in 1999. The overall prevalence of vancomycin-resistant enterococci at 30 facilities that participated in all three years of the study decreased from 2.2 percent in 1997 to 1.4 percent in 1998 and to 0.5 percent in 1999 (P Conclusions An active infection-control intervention, which includes the obtaining of surveillance cultures and the isolation of infected patients, can reduce or eliminate the transmission of vancomycinresistant enterococci in the health care facilities of a region. (N Engl J Med 2001;344:1427-33.
    corecore